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Summary

� Soil photoautotrophic prokaryotes and micro-eukaryotes – known as soil algae – are,
together with heterotrophic microorganisms, a constitutive part of the microbiome in surface

soils. Similar to plants, they fix atmospheric carbon (C) through photosynthesis for their own

growth, yet their contribution to global and regional biogeochemical C cycling still remains

quantitatively elusive.
� Here, we compiled an extensive dataset on soil algae to generate a better understanding of

their distribution across biomes and predict their productivity at a global scale by means of

machine learning modelling.
� We found that, on average, (5.5� 3.4)9 106 algae inhabit each gram of surface soil. Soil

algal abundance especially peaked in acidic, moist and vegetated soils. We estimate that,

globally, soil algae take up around 3.6 Pg C per year, which corresponds to c. 6% of the net

primary production of terrestrial vegetation.
� We demonstrate that the C fixed by soil algae is crucial to the global C cycle and should be

integrated into land-based efforts to mitigate C emissions.

Introduction

Soils are a critical component of the global carbon (C) cycle and
are paramount in mitigating climate change (Amelung et al.,
2020). They are the largest repository of organic matter on land,
storing c. 1500 Gt C, which largely exceeds the amount of C
stored in the aboveground vegetation (i.e. c. 560 Gt; Crowther
et al., 2019). The magnitude of the soil organic C pool depends
strongly upon microorganisms, as microbial growth and activity
balance the accumulation and release of organic C through the
decomposition of plant litter (C. Liang et al., 2017). To date,
research on soil microorganisms has focused mostly on
heterotrophic microbes and their role in C release, with less atten-
tion paid to the role of microbial photosynthesis in soil C inputs.
Yet, many soil microorganisms are capable of CO2 fixation
(�Santr�u�ckov�a et al., 2018; Crowther et al., 2019; Akinyede et al.,
2020; Oliverio et al., 2020; Bay et al., 2021) and might, therefore,
contribute to soil C fluxes. In particular, whereas microbial pho-
tosynthesis in aquatic systems can quantitatively rival that of ter-
restrial plants (Field et al., 1998), microbial C fixation in soils has
so far never been evaluated at a global scale – but see Elbert et al.
(2012) for partial estimations based on cryptogam ground cover.

Recent global studies characterizing soil biodiversity have
shown that microorganisms capable of CO2 fixation are

omnipresent in soil (Cano-D�ıaz et al., 2020; Oliverio et al., 2020;
Bay et al., 2021). Soil photoautotrophic microbes that fix atmo-
spheric CO2 through photosynthesis are often referred to as soil
algae, whereas others perform CO2 fixation using chemoautotro-
phy or heterotrophy via several metabolic pathways and reactions
(Miltner et al., 2004). The role of nonphototrophic CO2 fixation
in soil C balance has been increasingly studied in the past few
years (Miltner et al., 2004, 2005; �Santr�u�ckov�a et al., 2018; Spohn
et al., 2019; Akinyede et al., 2020). However, soil algae often
constitute a small proportion of the soil microbiome biomass
(Mitchell et al., 2003; Jassey et al., 2013); for this reason, they are
often seen as insignificant for soil C uptake – but see Yuan et al.
(2012), Wu et al. (2015), and Ge et al. (2016). Yet, soil algae
occur in a range of surface soils, such as forest, grassland, and
desert soils (Cano-D�ıaz et al., 2020; Oliverio et al., 2020), and
encompass myriads of prokaryotes and micro-eukaryotes, with
Cyanobacteria and Chlorophyta being the most commonly
reported phyla in soil diversity surveys (Cano-D�ıaz et al., 2020;
Oliverio et al., 2020).

Soil algae have been extensively studied in drylands, where
photoautotrophic biocrusts often constitute the main source of C
for the soil system (Maier et al., 2018). However, very few studies
have considered the importance of soil C inputs by microscopic
algae in other ecosystems (Wyatt et al., 2011; Yuan et al., 2012;
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Schmidt et al., 2016; Halvorson et al., 2019; Hamard et al.,
2021a). Despite their apparent global distribution, our under-
standing of the ecological preferences of soil algae across broad
spatial scales remains limited. Though some previous work has
suggested that soil moisture availability is a key driver of soil algal
net primary productivity (NPP) (Brostoff et al., 2005; Yoshitake
et al., 2010; Hamard et al., 2021a,b), other studies have high-
lighted the importance of temperature (Shimmel & Darley,
1985; Dettweiler-Robinson et al., 2018) or plant community
composition (Hamard et al., 2021a), and it remains unclear how
predictable soil algal NPP is at larger spatial scales. As a result,
quantitative information on soil algal C fixation remains mostly
restricted to drylands (Rodriguez-Caballero et al., 2018) and is
not readily available at the global scale. Generating quantitative,
spatially explicit information about the distribution and produc-
tivity of soil algae at a global scale is thus critical for understand-
ing microbial control over soil C dynamics, from contributions
to soil C uptake to soil C stabilization and sequestration
(C. Liang et al., 2017).

In this study, we address a set of fundamental questions to
advance our understanding of the importance of soil algae in the
soil C cycle: What are the habitat preferences of soil algae? How
predictable is the CO2 fixation rate of soil algae across large spatial
scales and environmental gradients? What is the contribution of
soil algae to ecosystem C uptake? To address these questions, we
collated data on soil algal abundance and NPP from 203 georefer-
enced locations in all major terrestrial biomes (Fig. 1a; Support-
ing Information Tables S1, S2). We first conducted a biome-level
analysis to reveal the main patterns of soil algal abundance and
NPP. Second, we identified the main drivers of the abundance
and NPP of soil algae across biomes by using a stack of 55 global
layers of climate, soil, and vegetation characteristics (Table S3).
Finally, we used geospatial machine learning (ML) to generate a
global, 1 km resolution map of soil algal net C fixation across the
globe and estimated their global contribution to terrestrial NPP.

Materials and Methods

Literature survey

We collected data on soil algae from previously published studies
and unpublished data collections using a systematic review
approach. We searched for studies that quantified the density
and/or Chl biomass and/or primary productivity of soil algae in
surface soils. Peer-reviewed publications were collected by search-
ing Web of Science (1 January 1970 to 10 November 2019),
Google Scholar (1 January 1970 to 10 November 2019), and
ResearchGate to construct our datasets for a period of 7 months
(January–June 2019, with updates in November 2019). We used
the keywords ‘soil algae’ OR ‘photoautotroph’ AND ‘biomass’
OR ‘abundance’ AND ‘photosynthesis’ OR ‘primary productiv-
ity’ to build our database on soil algal abundance, Chl biomass,
and primary productivity in different types of ecosystems. We
standardized our efforts by focusing on studies in which samples
were taken from uppermost centimeters soil, including litter, as
soil algae further down in the soil column are expected to have

only very small photosynthetic rates. For experimental studies,
only the controls were considered.

Data collection

After initial screening, PDFs of all papers were manually screened
to collect data. In order to be suitable for our analyses, the chosen
papers had to present (or make reference to) the following infor-
mation and data:
(1) Sampled soil algal communities using standard methodolo-
gies, which would adequately capture quantitative information of
the abundance per g of dry soil, such as cytometry information, or
the C-analyzer used to quantify primary productivity. At a mini-
mum, total abundance or Chl biomass or primary productivity of
algae at each site had to be measured. Ideally, there was informa-
tion on the microbial domain (prokaryotes and/or eukaryotes),
with the abundance data (cell counts) of each domain.
(2) Information on the habitat cover and/or type of ecosystem.
(3) Available geographic coordinates for all sampled sites, or
maps that could be georeferenced. When spatial coordinates were
absent, but the type of ecosystem present, we included these data
in Fig. 1 but not in further calculations from Figs 2–4.

Data were extracted from tables, figures, the main text, and/or
supplementary materials; data extraction from figures was per-
formed using Web Plot Digitizer software (https://automeris.io/
WebPlotDigitizer/). When multiple values were available in each
study, we used the mean in our data analyses. Similarly, when
only minimum and maximum values were reported, we used the
mean between these two values. Information (including publica-
tion year, site location, number of plots, and ecosystem types)
was extracted from a total of 166 publications. This resulted in a
final subset of 203 georeferenced sites and 19 nongeoreferenced
sites that were used for further analyses. These sites include a
wide range of ecosystem types (forests, grasslands, croplands, and
wetlands) and climatic regions (arid, temperate, tropical, conti-
nental, and polar ecosystems), which we classified into seven
biomes: grasslands (6.4% of the data), drylands (19.7%),
broadleaf and mixed forests (14.3%), alpine and polar lands
(20.7%), wetlands (15.3%), croplands (11.8%), and broadleaf
evergreen forests (11.8%; see Tables S1, S2 for details).

Data collation

The data taken from one publication, including supplementary
material, or from our own unpublished measurements were
considered as a ‘dataset’. For each dataset, we calculated the
following site-level community metrics where possible: total
(prokaryotes +micro-eukaryotes) abundance of soil algae per g of
dry soil at the site, and soil algal net C uptake (g C m�2 yr�1) at
the site level. Issues often arose when compiling data from differ-
ent studies as the estimate may depend on the methods used.
Therefore, we referenced the methodologies used for quantifying
soil algal abundance and/or NPP for each dataset.

Three methods for quantifying the abundance of soil algae in
surface soils were reported in our database: culture dependent
through counting colony-forming units (CFUs; 34% of the data;
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only prokaryotes), flow cytometry (12%), and direct microscopy
(54%). These three techniques measure living and active cells
only, but their respective limitations – see details in Maron et al.
(2006), Kallmeyer et al. (2008), and Beal et al. (2020) –may have
influenced the final estimate of soil algal abundance. Although
these techniques give similar trends (Beal et al., 2020), CFUs
may overestimate cyanobacterial counts as this method selects for

rapid-growing specimens, whereas flow cytometric and micro-
scopic cell counting may underestimate densities as they require
detachment and mechanical or optical separation of cells from
interfering soil inorganic particles (Maron et al., 2006). To test
the potential bias in our data, we performed a linear mixed effects
model with the method used as a fixed effect and microbial
domain nested into ecosystem type and latitude as random effect

(a)

(b)
(c)

Fig. 1 Sample locations and abundance, annual net primary productivity (NPP) and contribution of soil algae to total NPP. (a) A total of 203 georeferenced
data points were collected from the literature and unpublished data and grouped into biome categories. (b, c) Averaged soil algal abundance (n = 101),
NPP (n = 102), and contribution to total NPP (n = 100): (b) overall; (c) per biome category. Open circles represent the mean and filled circles the median.
Colored bars indicate the range between the minimum and maximum values. Little squares indicate clipped extreme values; one clipped value in (b) and
three clipped values in (c). These extremely high values have been removed to increase the readability of means and medians.

New Phytologist (2022) 234: 64–76
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

Research

New
Phytologist66

 14698137, 2022, 1, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.17950 by M

ing L
i - N

orthw
est A

gri &
 Forestry , W

iley O
nline L

ibrary on [08/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



on the intercept. The model did not evidence any influence of
the methodology used on abundance data (P = 0.73; Fig. S1a).

Further, five different methods to estimate soil algal CO2 fixa-
tion were reported in our database: biomass growth quantifica-
tion (4% of the data), biological oxygen demand (BOD; 4% of
the data), Chl fluorescence (4%), infrared CO2 gas analyzer
(82%), and isotopic labelling (14C, 6%). All these methods
strictly focused on microbial photosynthetic activity (i.e. CO2 fix-
ation in the presence of light) and minimized or avoided possible
nonphototrophic CO2 fixation by subtracting dark CO2 fixation
rates from light CO2 fixation rates. Though these techniques dif-
fer, they usually are in agreement and give similar trends (Peter-
son, 1980; Richardson et al., 1984; Hamard et al., 2021a).
However, depending on the technique, net photosynthesis of
algae can be overestimated (e.g. BOD and Chl fluorescence
which provide maximal photosynthetic rates) or underestimated
(e.g. 14C isotopic labelling; Richardson et al., 1984), especially
under conditions of low nutrient and/or high light (Peterson,
1980). Nevertheless, although biomass and isotopic labelling

methods tend to overestimate soil algal NPP (P < 0.05), we
found that this trend was biome driven and was not significant
within biomes (P = 0.06; Fig. S1b).

Unless mentioned otherwise, soil algal C flux rates from stud-
ies providing estimates on an annual basis were included without
modification in the data base. Soil algal C flux values reported in
micromoles, microgram, milligrams, seconds, minutes, hours, or
days were converted into g m�2 yr�1. As microbial photosynthe-
sis neither occurs every day of the year nor all day long, we con-
strained the microbial photosynthetic activity to about one-third
of a day (8 h), for a limited period of time during the year: 80 d
in arctic areas, 150 d in subarctic areas, 240 d in temperate areas,
and 300 d in tropical areas. Maximal photosynthetic rates under
optimal conditions were limited to about one-third of the maxi-
mal value to account for limitations of photosynthetic activity
and dark respiration (Elbert et al., 2012). Reported rates that did
not take into account dark respiration were scaled with a factor of
two-thirds, as showed by our specific measurements in the field
(Fig. S2).

(a) (b)

Fig. 2 Environmental factors controlling the abundance and net primary productivity (NPP) of soil algae. Results from Boruta algorithm evaluating the
relevance of different environmental predictors for (a) the abundance and (b) the NPP of soil algae. Arrow length represents the mean relevance of each
predictor variable, whereas shaded areas represent the maximum importance of each variable. The matrix of environmental predictors was reduced
beforehand to select the most representative and least collinear variables (Supporting Information Fig. S3; see the Materials and Methods section).
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Environmental data collection

In order to identify the main environmental drivers of the abun-
dance and NPP of soil algae, and create spatial predictive models

of primary productivity, we sampled a stack of 55 environmental
variables at each of the data point locations using the Google
Earth Engine platform (Gorelick et al., 2017) (Table S3). The
stack was composed of 19 long-term climate variables extracted

(a)

(b)

Fig. 3 Global map of soil algal net primary productivity (NPP) at the 30 arcsec pixel scale (c. 1 km2). (a) NPP (g carbon (C) m�2 yr�1) of soil algae in surface
soil. Pixel values were binned into 15 quantiles to create the color palette. Grey color indicates area not investigated. (b) Coefficient of variation (SD as a
fraction of the mean predicted value) as a measure of soil algal primary productivity prediction accuracy. Overall, our prediction error is low, with the
exception of a low soil algal C flux rate in tropical forests and boreal zones. Pixel values were binned into 15 quantiles to create the color palette.
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from the WorldClim V1 database. They averaged monthly data
spanning the period 1960–1991. An additional 14 long-term cli-
mate variables were extracted from TerraClimate and averaged
for the period 1958–2019. Several vegetation related variables
were extracted from Terra Moderate Resolution Imaging Spec-
troradiometer: vegetation indices as proxies for plant cover (leaf
area index (LAI)) and biomass (normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI)), as well as val-
ues of primary productivity (NPP, gross primary production
(GPP)). We acknowledge that NDVI, EVI, LAI, NPP, and GPP
are derived from remote-sensing reflectance and can thus be sen-
sitive to the Chl fluorescence content of soil algae. However,
under plant coverage, we assume that their contribution to sur-
face reflectance remains minor compared with the plant foliage
(Chen et al., 2005). Seven soil variables were extracted from the
OpenLand database for the 0–5 cm soil depth. Five variables on
soil moisture were downloaded from the NASA-USDA Global
soil moisture and the NASA-USDA Soil Moisture Active Passive
Global soil moisture datasets. Elevation data were retrieved from
the Global Multi-resolution Terrain Elevation Data 2010.
Human population density and latitudes and longitudes were
also integrated in the analyses. All details about environmental
variables are given in Table S3.

Data were acquired using the Google Earth Engine platform
(Gorelick et al., 2017). Long-term statistics (mean, median, mini-
mum, and maximum values) were calculated for the whole avail-
able period in each database for integration in our numerical
analyses. To harmonize the different environmental layers across
the globe, it was necessary to aggregate or disaggregate (when
appropriate) the spatial resolution of the different layers to match
a 30 arcsec resolution. Following the spatial harmonization, the
global layers were matched with each of the 203 data-point loca-
tions.

Identification of the variables of importance in driving soil
algal abundance and net primary productivity

We employed a clustering approach using the CLUSTOFVAR pack-
age (Chavent et al., 2012) in R to reduce the environmental

covariates of interest and select the most representative and least
collinear variables. We tested a range of cluster numbers (5, 10,
15, and 20) using CLUSTOFVAR to define the best number of vari-
ables to test in ML modelling. Fifteen variables of interest were
identified using CLUSTOFVAR (see details in Fig. S3), related to cli-
mate (bio03, bio04, bio10, bio11, bio12, bio14, bio15), vegeta-
tion cover (lai), soil (moist, soc, bulk, ph, sand), and geographic
(lon) conditions (abbreviations for these variables are given in
Table S3 and Fig. 2). We then identified the main environmental
drivers of soil algal abundance and NPP among these 15 variables
using the Boruta algorithm, a wrapper of random forest (RF) and
one of the most efficient tools for variable selection (Degenhardt
et al., 2019). The Boruta algorithm compares the importance of
predictor variables with those of random so-called shadow vari-
ables using statistical testing and several runs of RFs. The Boruta
algorithm was computed for the entire dataset using 1000 itera-
tions.

Predicting soil algal net primary productivity by means of
machine-learning modelling

Training ML models on a relatively small number of observations
can lead to overfitting and produce inaccurate results. As gather-
ing a bigger dataset to overcome these problems was impossible
due to the limited number of available studies in the literature,
we used a series of methods and targeted sensitive analyses testing
the robustness of our predictions. Particular attention was given
to the distribution of data, the number of predictors used, the
choice of the model(s) and its (their) hyperparameters, cross-
validation strategies, and confidence prediction intervals (Bishop,
2006; Lesmeister, 2019):
(1) We inspected the distribution of the soil algal NPP values
and searched for outliers, as they can strongly influence the
model and its prediction. One extremely high and unre-
alistic value was removed from the database (see Table S2 for
details).
(2) We implemented our ML models with the most relevant pre-
dictors for soil algal NPP based on Boruta analysis (see earlier
herein). Usually, explicit predictor selection is not the best

(a) (b)

Fig. 4 Dominant land uses in soil algal net
primary productivity (NPP) hotspots and total
soil algal NPP. (a) The mean and SE (n = 10)
of the land uses identified in the four
hotspots of soil algal NPP (> 50 gm�2 yr�1)
from the 10 prediction maps (Supporting
Information Fig. S7) used to build the final
map presented in Fig. 3(a). (b) The median
and interquartile range (n = 10) of the total
soil algal productivity per year from the 10
ensemble random forest models used in the
prediction maps presented in Fig. 3(a).
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approach for ML, but it is an essential step when data size is lim-
ited to avoid overfitting (Meyer et al., 2018).
(3) Because complexMLmodels with many parameters (e.g. neu-
ral networks approaches) are more prone to overfitting issues
(Bishop, 2006; Lesmeister, 2019), we selected and tested six
classes of relatively simple ML algorithms trained on the six best
environmental variables identified with the Boruta algorithm to
spatially predict soil algal NPP (see the Results and Discussion sec-
tion). We considered the most common ML models, including a
simple generalized linear model, an L1-regularization regression
linear model, a Bayesian generalized linear model, k-nearest-
neighbor, bagged multivariate adaptive regression splines, and RF
as a benchmark. We further combined all ML algorithms into a
stack ensemble model as predictions from more than one ML
algorithm may give better predictive performance than could be
obtained from any of the basic or essential learning algorithms
alone (Lesmeister, 2019). These ML model types were chosen
either because they were previously used for spatial predictions or
because the general ML literature suggests that they could perform
well for this task (Table S4). Each of the ML models included
model-specific tuning parameters that were left at default values
for initial testing and comparison. To assess the predictive perfor-
mance of the models, we split the total number of points into a
training set and a test set using an 80 : 20 random split. We used
the training set to train the different models and the test set to test
their performance. We evaluated the model strength using k-fold
cross-validation (with k = 10). For each k, we stored the vector of
soil algal NPP predictions, which was then used to generate pre-
dictive statistics, namely the squared Pearson’s correlation
between observed soil algal NPP values and those predicted (noted
R2) and the root-mean-squared error (RMSE). We found that all
ML algorithms can successfully predict soil algal NPP, although
RF outperformed other ML algorithms by a significant margin
(Fig. S4). The ensemble model did not perform better than RF
(P = 0.98, ANOVA) while giving higher RMSE (Fig. S4). As RF
performs better overall and has been demonstrated to provide
robust predictions for small sample sizes (Ramezan et al., 2021),
we selected RF to create a predictive, high-resolution map of soil
algal NPP across the globe, as described later herein.
(4) We used a grid-search procedure to iteratively tune the hyper-
parameters of our RF model in R using the RANDOMFOREST and
CARET packages (Kuhn, 2008): the number of trees to grow (ntree;
50, 150, 250, 350, or 450) and the number of variables sampled
at each split (mtry; 2–6), resulting in a total of 25 RF models.
The values ntree = 350 and mtry = 4 were defined as the best
hyperparameters. We used the training set to determine the best
set of model hyperparameters, and to train the model. We used
the test set to assess out-of-sample error, as well as model predic-
tion performance using R2 and RMSE values, as explained earlier.
(5) We used four strategies to cross-validate our best RF model
and generate statistics of the model robustness and predictive
power (Fig. S5). The first strategy focused on the size of the
dataset and corresponded to a common k-fold cross-validation
where observations were randomly split into k sets of decreasing
size (hereafter, k-fold ‘size CV’) ignoring any structure of poten-
tial spatial dependence in the data. Model training was then

performed iteratively on k� 1 sets. Here, we used k = 6; we itera-
tively and randomly selected 100%, 90%, 80%, 70%, 60%, and
50% of the dataset to train our RF models. We chose to maintain
the integrity of our dataset and not remove a subset of data at the
beginning as it would mean the loss of geographic representation.
As a test set, we used a dataset in which only unique pairs of coor-
dinates were present (65 pairs in total instead of 102 data points;
hereafter ‘paired dataset’). We summarized our initial dataset
using the median applied on similar pairs of coordinates. As local
variability could reach 150 g C m�2 yr�1, this approach enabled
us to obtain a validation dataset for accuracy assessment. The sec-
ond strategy (i.e. the k-fold ‘shuffled CV’) is inspired by ‘null-
model’ analyses in ecology and tests the assumption that our pre-
dictions are not random and driven by our environmental predic-
tors. To do so, we randomized the environmental predictors
matrix to break any structure of environmental dependence in
the data. We iteratively and randomly shuffled the environmental
matrix 10 times (k = 10) before training our RF models. The
third strategy (i.e. k-fold ‘spatial CV’) differs from the size CV in
that observations are split into spatially structured clusters (Plo-
ton et al., 2020). Here, the objective was to group observations
into spatial clusters and take into consideration the variability
generated by the multiple measurements at the same locations, or
nearby, in our dataset. Spatial clusters were generated using a
hierarchical cluster analysis (Ward’s hierarchical agglomerative
linkage method) of the distance matrix of coordinates and a clus-
tering height of H = 50 km. Here, we used k = 10; we iteratively
and randomly selected data within each spatial cluster to train
our RF models. The maximum size of the k-datasets was 65; that
is, the maximum number of unique pairs of coordinates in our
paired dataset. Here again, the paired dataset was used as a test
set. The fourth strategy (k-fold ‘predictor variable shuffling (PVS)
CV’) tests the assumption that our model gets overfitted by the
covariance among environmental predictors. To refute this
assumption, we randomly shuffled the values of one, two, three,
four, and five predictors before training the RF model. PVS CV
was run on spatially clustered training sets (same approach as spa-
tial CV) with k = 100 to cover all random combinations among
predictors. For each CV strategy, we stored the vector of soil algal
NPP predictions, which was then used to generate CV statistics,
namely R2 and the RMSE.
(6) To assess any further overfitting and/or highly optimistic
evaluations of the predictive power of our RF model due to the
spatial dependence in the raw data and model residuals (Ploton
et al., 2020), we tested for spatial autocorrelation in the raw data
and in the size and spatial CV model residuals (Fig. S6). We
observed spatial autocorrelation using empirical variograms and
did not evidence any particular spatial autocorrelation. The geo-
statistical analysis GSTAT R package (Pebesma & Heuvelink,
2016) was used for variogram and spatial autocorrelation testing.
(7) Like many algorithmic approaches to prediction, RF typi-
cally produces point predictions that are not accompanied by
information about how far those predictions may be from true
response values. To cross-validate and quantify this issue, we used
prediction intervals that estimate the interval into which future
observations will fall with a given probability (Meinshausen,
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2006). In other words, it calculates the confidence or certainty in
the prediction. We used ‘out-of-the bag’ (OOB) prediction inter-
vals as a straightforward approach for constructing our RF pre-
diction intervals (Zhang et al., 2020). As described for the spatial
CV strategy, we generated 10 independent subsets of our entire
dataset, stratified by spatial clusters. For each independent subset,
we trained our best RF and calculated OOB prediction intervals
at each run. Then, we classified whether data points from the test
dataset fell within or outside RF prediction intervals.

All comparative and cross-validation analyses were performed
in R (R Core Team, 2019).

Mapping soil algal net primary productivity and evaluating
model uncertainties

To create the final map of soil algal NPP and represent the confi-
dence in our estimates for each pixel, we used an ensemble
approach (van den Hoogen et al., 2019; Ma et al., 2021). We
averaged the global predictions from 10 RF models trained on 10
independent subsets of our entire dataset, stratified by spatial
clusters to proportionally represent the major bioclimatic zones
in each of the 10 independent subsets (spatial CV strategy). This
approach minimizes the influence of any single prediction,
thereby stabilizing variation and minimizing bias that can other-
wise arise from extrapolation or in-fit overfitting when using a
single ML model (Sagi & Rokach, 2018). The 10 independent
RF models were run with the six best environmental variables
identified through the Boruta algorithm and using the best-
performing set of hyperparameters (Fig. S7). Through this
approach, we thus returned the best RF model 10 times using 10
different training sets that took into account local variability. We
then used the mean predicted value across the 10 RF models as
the final prediction of soil algal NPP for each pixel. Finally, from
these 10 models, we further calculated per-pixel coefficient-of-
variation values (SD divided by the mean predicted value) as a
measure of prediction uncertainty (Ma et al., 2021). In addition,
we assessed the extent of extrapolation in our models; that is, how
well our sampled data spread throughout the full environmental
space, following van den Hoogen et al. (2019). In particular, we
examined how many of the Earth’s pixels existed outside the
range of our sampled data for each of the six environmental layers
used in our RF model. To do so, we extracted the minimum and
maximum values of each environmental layer of the pixels in
which our sampling sites were located. Then, for each environ-
mental layer, we evaluated the number of terrestrial pixels that fell
outside the sampled range and calculated the relative proportion
of interpolation; that is, the percentage of environmental bands
that fell into the sampled range. Next, we created a per-pixel rep-
resentation of the relative proportion of interpolation and extrap-
olation (Fig. S8). All geospatial and extrapolation analyses were
performed in Google Earth Engine (Gorelick et al., 2017).

Cross-validation map of soil algal net primary productivity

As an additional validation exercise, we estimated annual soil
algal NPP following the biome-based land cover approach taken

by Elbert et al. (2012). Soil algal NPP was estimated by multiply-
ing the global ground area surface of a particular biome with its
corresponding median of algal C uptake flux (Fig. 1). Biome
land covers were recovered from the Global Land Cover Charac-
terization database v.2.0 (https://www.usgs.gov/centers/eros/
science/usgs-eros-archive-land-cover-products-global-land-cover-
characterization-glcc) and reclassified according to our biome
classes: grasslands, drylands, broadleaf and mixed forests, alpine
and polar lands, wetlands, croplands, and broadleaf evergreen
forests.

Results and Discussion

Biome-level patterns of soil algal density and net primary
productivity

By compiling a dataset on microscopic abundance observations
(n = 115; Table S1), we found on average (5.5� 3.4)9 106 soil
algae per g of dry topsoil (Fig. 1b). Soil algal density varied
within and across biomes, ranging from thousands to millions of
individuals per g of dry soil (Fig. 1c). Overall, soil algal abun-
dances (103 cells per g of dry soil) were highest in wetlands
(median = 1036), grasslands (median = 410), broadleaf evergreen
forests (median = 202), and croplands (median = 161), whereas
the lowest densities were found in drylands (median = 85),
broadleaf and mixed forests (median = 59), and alpine and polar
lands (median = 20) (Fig. 1c). These findings show discrepancies
with the most recent assessments of the biogeographic distribu-
tion of soil algae based on DNA sequencing approaches (Cano-
D�ıaz et al., 2020; Oliverio et al., 2020). These previous studies
suggest that soil algae are typically abundant in arid soils, encom-
passing up to 40% of the total eukaryotic community (Oliverio
et al., 2020) and 4% of the total prokaryotic community (Cano-
D�ıaz et al., 2020). However, even though data based on amplicon
gene sequencing give arguably an accurate picture of microbial
diversity, our findings illustrate that they cannot be used to infer
biogeographic patterns of algal density in soils. Nevertheless,
DNA sequencing data could explain the patterns of absolute
abundance seen in this study (Hamard et al., 2021a). The bloom-
ing of specific taxa resulting from taxonomic turnover in response
to specific soil conditions could drastically increase total soil algal
abundance (Karaoz et al., 2018).

To identify the main environmental variables that drive algal
density in soils, we related the density of soil algae to environ-
mental factors. In contrast to soil invertebrates (van den Hoogen
et al., 2019) and total microbial biomass (Xu et al., 2013), our
analysis did not reveal notable latitudinal and/or longitudinal
effects on soil algal abundance. Instead, and as shown for the
community composition of micro-eukaryotes (Oliverio et al.,
2020; Aslani et al., 2021) and bacteria (Delgado Baquerizo et al.,
2018), we found that climate (i.e. temperature and precipitation)
was a main driver of the global distribution of total algal density
in soils. However, plant cover (i.e. LAI) and soil characteristics
(i.e. soil moisture, soil organic C content, and pH) were as
important as climate (Fig. 2a). In particular, mean annual tem-
perature and precipitation, vegetation cover, and soil moisture
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had strong positive effects, whereas increasing pH had a negative
effect on total soil algal abundance (Fig. S9). Although the exact
mechanisms behind these interactions still need to be identified,
our results indicate that complex interactions among soil proper-
ties, climate, and vegetation determine the growth efficiency of
soil algae. Our findings suggest that frequent rainfall and plant
cover facilitate the size distribution and connectedness of aqueous
microbial habitats in soils by increasing water retention in soil
pores. This, in turn, promotes microbial cell motility, cell-to-cell
interactions (Bickel & Or, 2020), and, therefore, algal abundance
in topsoils. In contrast to the general assumption that arid envi-
ronments are the main habitat for soil algae (Oliverio et al.,
2020), we show here that soil algae are widespread and more
abundant in absolute numbers in acidic, wet, and vegetated areas.
These results further suggest that the contribution of soil algae to
terrestrial productivity is particularly important in these areas.

We tested this assumption by collating a second dataset from
the literature on algal NPP in surface soil, and spanning similar
biomes as for the abundance data (n = 102; Fig. 1a; Table S2).
On average, soil algae were responsible for a mean annual NPP
of 30 g C m�2 (0.06–253.3 g C m�2 yr�1) across biomes
(Fig. 1b). When comparing these data with terrestrial NPP at the
same locations, soil algal NPP accounted for c. 10.3% (0.3–80%)
of terrestrial NPP (Fig. 1b,c), which is consistent with the value
reported by Hamard et al. (2021a) for peatlands (c. 9.3%). We
found the highest algal NPP in croplands (median = 157 g C
m�2 yr�1), broadleaf and mixed forests (median = 28.2 g C
m�2 yr�1), grasslands (median = 22.6 g C m�2 yr�1), and
broadleaf evergreen forests (median = 18 g C m�2 yr�1) (Fig. 1c),
supporting our empirical and independent observations on abso-
lute abundance (Fig. 1c). We further showed that the absolute
abundance and NPP of soil algae were largely driven by the same
environmental variables (Fig. 2), especially soil moisture, vegeta-
tion cover, and annual precipitation (Fig. S9). The positive corre-
lation between soil algal NPP and increasing vegetation cover
might be seen as counterintuitive given that plant canopy reduces
the light availability at the soil surface. However, most micro-
scopic algae show optimal photosynthesis at low light intensity
(Ritchie & Larkum, 2012; Hamard et al., 2021a) by optimizing
light harvesting at low light flux (Perrine et al., 2012). Given the
positive relationship between total microbial abundance and
metabolic rates in soils (Johnston & Sibly, 2018), our results fur-
ther presume a simultaneous increase in soil algal abundance and
productivity with increasing environmental favorability, which
corroborates previous findings in aquatic systems (Y. Liang et al.,
2017).

Global biogeography of soil algal net primary productivity

We implemented an ensemble of 10 RF models (Fig. S7) to pre-
dict soil algal NPP based on the six best covariate layers (Fig. 2);
that is, annual precipitation, soil moisture, vegetation cover, soil
organic C content, vapor pressure deficit, and soil sand content
(see the Materials and Methods section). Our ensemble RF mod-
els predicted the test data reasonably well (averaged R2 = 0.51,
RMSE = 0.84, or 2.4 g C m�2 yr�1; Fig. S10). It showed a fairly

linear relationship with observed soil algal NPP, although pre-
dicted NPP tended to be overestimated at low NPP and underes-
timated at high NPP – a common bias pattern resulting from the
RF algorithm (Xu et al., 2016). Nevertheless, a sensitivity analysis
based on RF prediction intervals showed that nearly 93% of
observations from the test dataset fell within the RF prediction
intervals (Fig. S11). This indicates that our RF model provides
unbiased results, with predictions falling within the full range of
observed data. Further rigorous k-fold cross-validation steps
(Fig. S5) revealed that RF predictions did not lead to overfitting
by the possible covariance among predictors (Fig. S12) and were
robust without issues due to the size of the data set (size CV:
R2 = 0.47 and RMSE = 0.98; Figs S13, S14), the spatial structure
of the data (spatial CV: R2 = 0.39 and RMSE = 1.04; Fig. S13),
or possible stochasticity in the predictions (shuffled CV:
R2 = 0.02 and RMSE = 1.4; Fig. S13). Our cross-validation hence
indicates that soil algal NPP can be reasonably predicted while
providing accurate predictions within confidence intervals and
avoiding overfitting. We therefore used our spatially unbiased RF
models (spatial CV approach) to upscale observed soil algal NPP
across the globe and to map the global distribution of soil algal
NPP (Fig. 3).

The quantitative map of soil algal net C fixation showed fixa-
tion rates ranging between 2.3� 0.3 and 84� 32.4 g C
m�2 yr�1 (Fig. 3a). Overall, the predictive uncertainty was rela-
tively low, although areas of substantial uncertainty still remain
in tropical (central Brazil) and subarctic (north Canada) regions
(Fig. 3b). Despite these uncertainties, the map produced through
RF modelling provided a more detailed and accurate spatial dis-
tribution of soil algal NPP than the low-resolution map extrapo-
lated from biome land-cover (Fig. S15). The map did not reveal
notable latitudinal trends, unlike other soil C processes, such as
soil respiration (Xu et al., 2013), bacterial and fungal biomass
(He et al., 2020), and microbial residence time (He & Xu, 2021).
However, it highlighted four hotspots of soil algal NPP (> 50 g C
m�2 yr�1), in northeastern North America, southeastern South
America, central and western Europe, and eastern Asia (Fig. 3a).
Further analysis of land cover showed that these four hotspots are
dominated by croplands and forests (Fig. 4a), which is in good
concordance with our empirical observations (Fig. 1c).

Globally integrated, soil algal NPP amounted to c. 3.6 Pg C
yr�1 (2.6–4.8 Pg C yr�1; Fig. 4b), which is slightly higher than
the value reported for soil cryptogams, and that includes
bryophytes and lichens (0.34–3.3 Pg C yr�1; Elbert et al., 2012;
Porada et al., 2013). A few factors may be responsible for this
counterintuitive difference. First, our estimation did not focus on
cryptogams ground cover only (Elbert et al., 2012) but on the
whole ground surface. Second, our data compilation on soil algal
NPP much exceeds previous efforts and not only included dry-
lands but also many wetter areas, such as croplands, rainforests,
and wetlands. These regions evidenced algal NPP values two to
eight times higher than in drylands (Fig. 1c), on which previous
estimations are mostly based (Elbert et al., 2012; Rodriguez-
Caballero et al., 2018). Third, previous estimates mostly included
cyanobacterial NPP (Elbert et al., 2012). Many cyanobacteria are
facultative heterotrophs and often downregulate their own
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photosynthesis to nearly 10% of their maximum rate when cooc-
curring with plants, as they get C from them (Adams & Duggan,
2008).

General implications

With nearly 3.6 Pg C taken up annually, soil algae contribute to
c. 6.4% of the global terrestrial NPP (c. 56 Pg C yr�1; Zhao et al.,
2005) – again supporting our independent empirical observa-
tions across biomes (Fig. 1b). Such a contribution to terrestrial
NPP might seem relatively high considering the low C biomass
of soil algae compared with terrestrial plant biomass (Bar-On
et al., 2018). Yet, the photosynthetic capacity of soil algae is com-
parable to plants when considering their Chl content per unit
area (Fig. S16; Table S5). Furthermore, the small fraction of C
found in live standing biomass of soil algae does not reflect the
amount of C cycled through this pathway, as microbial growth
rates and turnover are much higher than in plants. Accordingly,
one might argue that most of the C fixed by soil algae is then
rapidly released through respiration and decomposition as soil
algae die, minimizing their impact on soil C sequestration. How-
ever, recent findings showed that C in soil algal biomass (Yuan
et al., 2012) and microbial necromass (Liang et al., 2019) can sig-
nificantly contribute to soil organic C, thus suggesting that soil
algae play a role in soil C sequestration in the long term. Never-
theless, this contribution to soil C sequestration most probably
depends on multifactorial environmental factors (Liang et al.,
2019), as well as on the formation and mean residence time of soil
algal-derived organic products (Hu et al., 2020). Furthermore, soil
algal activity may also initiate hotspots and hot moments of
heterotrophic activity in soils by providing resource subsidies to
heterotrophic (micro)organisms, either as food for consumers –
such as heterotrophic micro-eukaryotes (Seppey et al., 2017),
earthworms, and springtails (Schmidt et al., 2016) – or through
the release of labile C that could prime heterotrophic activity
(Wyatt & Turetsky, 2015), and hence stimulate decomposition
processes in soils (Wyatt & Turetsky, 2015; Halvorson et al.,
2019). Although the influence of soil algae in terms of C seques-
tration and release still remains virtually unknown, our findings
indicate that they are important players in global soil C uptake,
and hence should be taken into account in terrestrial C models.

Despite the confidence in our estimates, we caution that some
bias might affect the exact numbers of predicted annual soil algal
NPP. First, most algal productivity data rely on snapshot mea-
surements, as continuous, high-resolution measurements of algal
NPP in soils are scarce. We thus used some assumptions to esti-
mate annual soil algal NPP (see Table S2 and the Materials and
Methods section) and acknowledge that seasonal variation in
algal photosynthetic activity due to differences in climatic condi-
tions, light, and nutrient availability may influence our estima-
tions. Second, though our model predictions reflects well the
observed variation in soil algal NPP across large spatial gradients
(e.g. biomes), we acknowledge there are still some limits regard-
ing our ability to accurately predict at smaller spatial scales. Soil
algal diversity and community composition (Hamard et al.,
2021a,b), predation strength (Schmidt et al., 2016), and/or soil

nutrient availability (Gilbert et al., 1998) can influence soil algal
activity at small spatial scales. Therefore, some of the unexplained
variation in our RF model is probably due to missing plot-level
information where soil algal NPP was quantified, explaining the
lower range in our RF predictions compared with observations.
We minimized this issue by including data from close locations
as much as possible. In addition, our spatial CV taking into
account local variability did not show a sharp decline in model
R2, suggesting that local variation does not substantially affect the
numbers obtained. Finally, we further note that the size of our
dataset is limited, as in all other global studies on soil biodiversity
(Delgado Baquerizo et al., 2018; van den Hoogen et al., 2019;
Cano-D�ıaz et al., 2020; Oliverio et al., 2020), with some regions
being underrepresented. Although our data compilation exceeds
previous efforts, and even if we attempted to minimize all issues
regarding overfitting and the size of our dataset, the risk that our
estimations deviate from the true mean remains, particularly in
areas with low sampling density (Fig. 3b). Nevertheless, we tested
the extent of extrapolation of our RF model by examining how
many of the Earth’s pixels existed outside the sampled range of
our environmental covariates used in the RF model (see the
Materials and Methods section). We found that our samples cov-
ered the vast majority of environmental conditions on Earth,
with 88% of Earth’s pixels having at least > 80% of the predictor
bands falling within the sampled range of environmental condi-
tions (Fig. S8), thus providing confidence in our estimations.

In conclusion, our synthesis presents the most comprehensive
assessment of the distribution of soil algae and the global impor-
tance of microbial photosynthesis in soil C uptake. Our findings
alter some of our most basic assumptions about the role of
microorganisms in soil ecological functions by showing that
microbial photosynthesis is not only a major component in
aquatic ecosystems but also in most terrestrial biomes. We cau-
tiously conclude that soil algae add a so far not considered addi-
tional 3.6 Pg C yr�1 to net terrestrial C uptake, which is
equivalent to c. 31% of the global anthropogenic C emissions
(c. 11.5� 0.9 Pg C; Friedlingstein et al., 2019). Although our
estimate of total soil algal NPP will undoubtedly be refined with
future data collection, our findings indicate that soil algae are,
together with nonphototrophic microbial CO2 fixation (Spohn
et al., 2019; Akinyede et al., 2020), major players in the global
soil C balance. Preserving the unseen soil (algal) biodiversity
locally and across biomes has never been more important as the
urgency to harness all available opportunities to reduce atmo-
spheric CO2 grows.
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